Effects of climate-driven primary production change on marine food webs: implications for fisheries and conservation

*School of Biological Sciences, The Ecology Centre, The University of Queensland, St Lucia, Qld 4072, Australia, †Climate Adaptation Flagship, Commonwealth Scientific and Industrial Research Organisation Marine and Atmospheric Research, Cleveland, Qld 4163, Australia, ‡Climate Adaptation Flagship, CSIRO, Marine and Atmospheric Research, Hobart, Tasmania 7001, Australia, §School of Mathematics and Physics, The University of Queensland, St Lucia, Qld 4072, Australia, ¶Fisheries Centre, University of British Columbia, Vancouver, Canada V6T 1Z4, ††Snowy Mountains Engineering Corporation, Spring Hill, Qld 4000, Australia, **Queensland DPI&F, Sustainable Fisheries, Northern Fisheries Centre, Cairns 4870 Australia, ‡CSIRO Division of Marine and Atmospheric Research, Wembley, Western Australia 6014, Australia, ‡‡Department of Regional Development, Primary Industry, Fisheries and Resources, Darain 0801, Australia, §§Department of Fisheries, Fisheries Research, Hillarys, Western Australia 6025, Australia, ¶¶West Coast Vancouver Island Aquatic Management Board, Port Alberni, BC, Canada V9Y 7L9, §§§University of Victoria- School of Environmental Studies, Victoria, BC, Canada V8P 5C2, ***Sea Around Us Project, University of British Columbia, Vancouver, Canada V6T 1Z4

Abstract

Climate change is altering the rate and distribution of primary production in the world’s oceans. Primary production is critical to maintaining biodiversity and supporting fishery catches, but predicting the response of populations to primary production change is complicated by predation and competition interactions. We simulated the effects of change in primary production on diverse marine ecosystems across a wide latitudinal range in Australia using the marine food web model Ecosim. We link models of primary production of lower trophic levels (phytoplankton and benthic producers) under climate change with Ecosim to predict changes in fishery catch, fishery value, biomass of animals of conservation interest, and indicators of community composition. Under a plausible climate change scenario, primary production will increase around Australia and generally this benefits fisheries catch and value and leads to increased biomass of threatened marine animals such as turtles and sharks. However, community composition is not strongly affected. Sensitivity analyses indicate overall positive linear responses of functional groups to primary production change. Responses are robust to the ecosystem type and the complexity of the model used. However, model formulations with more complex predation and competition interactions can reverse the expected responses for some species, resulting in catch declines for some fished species and localized declines of turtle and marine mammal populations under primary productivity increases. We conclude that climate-driven primary production change needs to be considered by marine ecosystem managers and more specifically, that production increases can simultaneously benefit fisheries and conservation. Greater focus on incorporating predation and competition interactions into models will significantly improve the ability to identify species and industries most at risk from climate change.

Keywords: climate change, ecological interactions, fisheries, food web model, marine biodiversity

Introduction

Climate change is the most widespread anthropogenic threat that ocean ecosystems face (Halpern et al., 2008). Globally, oceans are warming, becoming more acidic
Climate change has already been observed to strongly influence the distribution and abundance of ocean primary production (Richardson & Schoeman, 2004; Behrenfeld et al., 2006) and these changes have been linked to changes in higher trophic level organisms (Richardson & Schoeman, 2004; Beaugrand et al., 2008). Furthermore, primary producers, particularly phytoplankton, are likely to show the most rapid response to climate change due to their small size and fast population turnover (Hays et al., 2005). Effects of primary production change on marine ecosystems will have important implications for conservation of marine biodiversity and sustainable fisheries management (Cury et al., 2008).

Effects of climate-driven production change on marine ecosystems and fisheries can be explored using food web models that incorporate ecological interactions such as predation and competition (Cury et al., 2008). For instance, Watters et al. (2003) demonstrated that cyclic changes in annual primary production driven by El Niño oscillations may affect lower trophic levels more than higher trophic levels. Watters et al. (2003) used a single food web model, but the predicted response of biodiversity and fisheries to climate-driven primary production change may vary for different ecosystems and may be confounded by model design. Mackinson et al. (2008) used dynamic food web models of different ecosystems to demonstrate that including primary production change improved the fit of those models to observed biomass time-series. Modelling historical patterns provides a means for understanding the drivers of change in marine ecosystems. However, anthropogenic climate change will pose new threats to marine biodiversity and new challenges to management of marine ecosystems. Advanced warning of these threats and challenges may be provided by using climate forced food web models to predict species and fisheries most likely to be negatively affected by climate change.

The goal of the present study is to investigate effects of predicted primary production change on biodiversity and fisheries in a broad range of Australian marine ecosystems. We used 12 existing food web models of different Australian marine ecosystems, from tropical to temperate regions, to investigate effects of changing primary production on fishery catch, fishery value, biomass of species with conservation importance and indices of community composition that may indicate system-wide change. We present results of future primary productivity changes under climate change and investigate the ecosystem response to alternative productivity changes in sensitivity analyses. We also consider how food web model design complexity and specification of predator–prey interactions affect the ecosystems’ responses. In this study, we focus only on primary production driven changes and leave the more complex parameterization of temperature effects on physiology (Portner & Farrell, 2008) for subsequent work. Given the magnitude of predicted changes in production in the world’s oceans (up to 400% over 50 years, Sarmiento et al., 2004), there are likely to be major ramifications for marine biodiversity and fisheries.

Materials and methods

Overview of the approach

We used 12 existing Ecopath with Ecosim (EwE) dynamic marine food web models to describe different Australian marine ecosystems (see Table 1 for key model details and Fig. 1 for the model regions). The EwE software has been under development since the 1980s (Christensen & Walters, 2004a) and there are ~200 models developed worldwide (Fulton, 2009). The EwE equations are grounded in general ecological theory and have proved capable of capturing real ecosystem dynamics in a variety of different ecosystems (e.g., Walters et al., 2005). This success stems in part from the large amounts of data, ranging from dietary information to biomass estimates that any single EwE model integrates into a consistent representation of a marine food web (Christensen & Walters, 2004a). We used EwE models to investigate the response of ecosystems to primary production change by forcing a linear change in the rate of primary production over 50 year simulations in each of the 12 Australian models. We divided these simulations into three sections. First, we present predictions from models of climate-driven production change, second we use these predictions to force EwE models to predict changes in higher trophic levels, and
<table>
<thead>
<tr>
<th>Model (abbreviation)</th>
<th>Reference and institution</th>
<th>Purposes for development</th>
<th>Area (km2)</th>
<th>No. living groups</th>
<th>Fitting to time-series data*</th>
<th>Primary producer groups (*habitats mediator for juvenile groups)</th>
<th>% of primary production</th>
<th>Production model predicted % change in primary production over 50 years (± 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burdekin coast</td>
<td>Gehrke (2007), CSIRO</td>
<td>Effect of reducing nutrient content of river outflow on coastal fisheries</td>
<td>987</td>
<td>18</td>
<td>Y (16 years, 7 groups)</td>
<td>Phytoplankton 73</td>
<td>24</td>
<td>-10 (0.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seagrass 20</td>
<td>10 (1 × 10$^{-6}$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benthic microalgae 5.8</td>
<td>10 (0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Macroalgae 0.88</td>
<td>10 (0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mangroves 0.25</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>Great Barrier Reef</td>
<td>Gribble (2003), Queensland Department of Primary Industries</td>
<td>Impact of reef fisheries on by-catch species and food webs; trophic links between coastal and reef ecosystems</td>
<td>3.5 × 103</td>
<td>25</td>
<td>N</td>
<td>Benthic autotrophs 82</td>
<td>10 (1 × 10$^{-6}$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phytoplankton 19</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Gulf of Carpentaria, Benthic</td>
<td>S. Griffiths, R. Bustamante (unpublished), CSIRO</td>
<td>Ecological effects of prawn trawl fishery</td>
<td>3.7 × 104</td>
<td>51</td>
<td>Y (36 years, 1 group)</td>
<td>Benthic microalgae 51</td>
<td>7 (1 × 10$^{-6}$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phytoplankton 45</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Macroalgae* 3.4</td>
<td>7 (0.007)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seagrass* 0.12</td>
<td>-7 (0.008)</td>
<td></td>
</tr>
<tr>
<td>Darwin Harbour</td>
<td>Martin (2005), Charles Darwin University</td>
<td>Predicting consequences of mangrove habitat loss to fish species</td>
<td>200</td>
<td>20</td>
<td>N</td>
<td>Mangroves 60</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phytoplankton 34</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benthic producers 6.8</td>
<td>9 (4 × 10$^{-7}$)</td>
<td></td>
</tr>
<tr>
<td>Port Phillip Bay</td>
<td>Fulton & Smith (2004) CSIRO, University of Tasmania</td>
<td>Comparison of models of different complexity; impact of nutrient input and fishing policies on the ecosystem and fisheries</td>
<td>1930</td>
<td>33</td>
<td>N</td>
<td>Phytoplankton 62</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benthic microalgae 26</td>
<td>4 (2 × 10$^{-6}$)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Macroalgae* 12</td>
<td>4 (0.004)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seagrass* 0.20</td>
<td>-4 (0.2)</td>
<td></td>
</tr>
<tr>
<td>Jurien Bay</td>
<td>Loneragan et al. (2008), CSIRO, Murdoch University</td>
<td>Ecological and fishery implications of new marine protected areas</td>
<td>823</td>
<td>72</td>
<td>Y (32 years, 9 groups)</td>
<td>Ecklonia 0.77</td>
<td>7 (0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sargassum 5.7</td>
<td>7 (0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low algae 19</td>
<td>9 (0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Turfs 1.9</td>
<td>9 (0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coralline algae 7.4</td>
<td>9 (0.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ephemeral seagrasses 5.3</td>
<td>-9 (0.01)</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Reference</td>
<td>Main Purpose</td>
<td>Model Variables</td>
<td>Relative Primary Production Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Tuna and</td>
<td>Young et al. (2009), CSIRO</td>
<td>Past ecosystem effects of fishing; future effects of new management policy</td>
<td>2.6×10^6</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billfish Fishery</td>
<td></td>
<td></td>
<td>Y (3 groups, 55 years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North-West shelf</td>
<td>Bulman (2007), CSIRO</td>
<td>Define trophic structure of the system</td>
<td>7×10^4</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Phyttoplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New South Wales</td>
<td>Forrest (2008), University of British</td>
<td>Effects of fishing on shark species</td>
<td>4.8×10^4</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelf</td>
<td>Columbia</td>
<td></td>
<td>Y (21 years, 19 groups)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South-east Shelf</td>
<td>Bulman et al. (2006), CSIRO</td>
<td>Assess impact of variability in primary production on fisheries; potential</td>
<td>3×10^4</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>impact of increasing seals on fisheries; ecosystem effects of fishery</td>
<td>Y (10 years, 42 groups)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Tasmania</td>
<td>Metcalf (2009), University of Tasmania</td>
<td>Suitability of new quotas for the banded morwong fishery; trophic cascades</td>
<td>350</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>caused by introduced species; compare qualitative and quantitative ecosystem</td>
<td>N</td>
<td>Phyttoplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>models</td>
<td></td>
<td>Red algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Tasmanian</td>
<td>Bulman et al. (2002), CSIRO</td>
<td>Effects of hypothetical re-introduction of pelagic fishing on deep sea</td>
<td>370</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seamounts</td>
<td></td>
<td>benthic marine protected area</td>
<td>N</td>
<td>Phyttoplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brown algae*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Green algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crustose algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listed are the model’s name, key reference and the main purpose for which it was created. Also included are some key model variables: the area they cover, the number of living groups, details of the time-series data used to estimate the vulnerability parameters and primary producer groups in each model with the percentage each contributes to system primary productivity (estimated from the model). The final column shows prediction for change in relative primary production rate (see Results).

*Not all groups have data for every year.
third we investigate the sensitivity of EwE models to different rates of change in primary production.

To predict effects of climate change on marine ecosystems, we linked an ocean general circulation model (GCM) to primary production models that drive production in EwE models. The three types of models (GCM, primary production and EwE) operate on different spatial and temporal scales and differ in their levels of biological complexity. EwE models represent discrete ecosystems with no spatial structure. They capture complex ecological interactions between groups of functionally equivalent species, but have limited input of physical environmental conditions, such as nutrient concentration.

GCMs provide global coverage of physical changes in environmental variables driven by projected greenhouse gas emissions. We use the physical environmental conditions from the GCM under a plausible emissions scenario to force a range of primary production models for coastal primary producers (benthic algae, seagrass, macroalgae and mangroves) and to drive a nutrient-phytoplankton-zooplankton-detritus (NPZD) model for phytoplankton productivity. The spatial resolution of the GCM means it has limited ability to accurately represent local and shelf processes that are important for primary productivity; however, we have used output from this model to illustrate predicted effects, pending further development of models at a finer spatial scale. Other approaches have been used to project primary production responses to global warming (e.g. Sarmiento et al., 2004) and we acknowledge that there still is no clear consensus on how global warming will affect primary production globally. A comprehensive list of model caveats and how they were addressed is provided in Appendix S1.

EWE food web models

Ecopath provides a static description of energy or mass flow in a food web over an arbitrary time period and Ecosim is its dynamic counterpart. The EwE approach is described in detail in Christensen & Walters (2004a), so only a brief description follows. An Ecopath model consists of a number of compartments, each of which represents the biomass of a group of functionally equivalent species (or more rarely a single species). Flows of biomass between the different groups are captured through predator–prey interactions and death to detritus. Ecopath models normally have greater taxonomic resolution for higher trophic levels, because these are usually the groups of interest for fisheries and conservation. Species of interest may also be further split into different life history stages. Different fishery types can also be represented and remove biomass from the system. During model development, biomass flows within groups are mass-balanced, such that consumption by a group is sufficient to account for its respiratory losses, biomass growth or decline and biomass production. Flows between groups are also balanced so that
each group’s biomass production is sufficient to account for consumption by its predators and fishery catches.

The Ecopath model is the starting point for temporal simulations of biomass and food web dynamics in Ecosim. In Ecopath, the biomass of an autotrophic group changes over time according to its primary production rate and the consumption rate of its herbivores. The biomass of each consumer group changes according to the biomass of its prey and consumption by its predators. A key conceptual aspect of the Ecosim approach is foraging arena theory, which partitions the availability of a prey group’s biomass to each predator group into vulnerable and refuge states (Walters & Martell, 2004). Foraging arena theory is implemented in Ecosim using the vulnerability parameter, which determines the maximum increase in mortality rate that a predator can exert on a prey group. Higher values of this parameter mean that predator consumption can control prey biomass (top-down control), whereas lower values mean prey biomass can control predator biomass (bottom-up control). These parameters also affect competition; for instance if two predators consume the same prey group in equal proportions, the predator to which the prey is more vulnerable will be the superior competitor. The vulnerability parameters can be estimated using a nonlinear procedure that fits predicted Ecosim biomass time-series to observed biomass time-series (Walters & Martell, 2004). Table 1 gives details about the EwE models in our study that had fitted vulnerability parameters.

Ocean GCM and primary production

The GCM model we used to project ocean conditions into the future is the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3.5 coupled atmosphere-ocean GCM (Hirst et al., 2000; Gordon et al., 2002). This model is an improved version of the Mark 3.0 model that was included in the latest Intergovernmental Panel on Climate report (IPCC, 2007b). The ocean model has global coverage, a spatial resolution of 1.875° longitude by 0.84° latitude, operates on a 15 minute time-step and has 31 ocean depth levels.

Climate conditions in GCMs are forced by projections of greenhouse gas emissions provided by the IPCC (Nakicenovic & Swart, 2000). Changes in future global greenhouse gas emissions are uncertain and differences in possible emissions scenarios contribute significantly to divergence in climate model predictions on timescales beyond 40 years into the future (IPCC, 2007a). We used predictions under the standard IPCC emission scenario A2. This scenario was devised as a high emission scenario (Nakicenovic & Swart, 2000), although recent observations suggest climate change is occurring more rapidly than this scenario predicts (Rahmstorf et al., 2007). IPCC emissions scenarios have not yet been updated (http://www.ipcc.ch), so we consider the A2 scenario as a mid-range scenario and explore the effect of alternative climate change scenarios indirectly in sensitivity analyses.

To project the effect of climate change on phytoplankton production, we linked the output from the GCM to a NPZD model. The NPZD primary production model has the same spatial and temporal resolution as the GCM. It describes the flux of nitrogen between inorganic and organic dissolved states, including nitrogen uptake by phytoplankton, the consumption of phytoplankton by zooplankton, the remineralization of nitrogen from plankton eggestion, excretion and mortality.

Such models represent the major climate-driven processes that impact oceanic phytoplankton production (Sarmiento et al., 2004). In these models, phytoplankton production is directly impacted by ocean warming and light availability driven by changes in cloud cover, wind and the depth of the mixed layer. The models also capture the process of enhanced ocean stratification caused by surface waters heating faster than at depth. This impacts availability of nutrients in surface waters where light is available for photosynthesis. Changes in broad-scale oceanographic processes, such as basin-scale circulation patterns, also affect supply of nutrients to surface waters.

The linked GCM-NPZD simulation predicts primary production of phytoplankton only, so we employ models to predict production rate in benthic primary producers including macroalgae, seagrass and benthic microalgae (e.g. Murray & Parslow, 1999; Aveytua-Alazar et al., 2008, see Appendix S2 for details and equations). Monthly intervals were used because the Ecosim food web models that we force with primary production estimates operate on monthly forcing functions. Our 12 EwE models did not resolve particular primary producer species, but rather primary producer functional groups (for instance phytoplankton, seagrass, macroalgae, benthic microalgae, mangroves). Primary production models were run for functional groups of primary producers using light, temperature and nutrient concentration for each EwE model region. Given the scope of the area covered by the benthic primary production models vs. the level of available data on climate-related primary productivity impacts, the models have not been parameterized specifically for the Ecosim model regions. Sensitivity of the primary production models to alternative parameterizations was investigated using Monte-Carlo simulations of production rate with random combinations of parameters selected from uniform distributions. The range of the parameter distributions for seagrass, macroalgae and...
benthic microalgae was taken from the literature search of possible values for that functional group conducted by Murray & Parslow (1999, their parameters given in Table B1). Results were not sensitive to alternative parameterizations, so production change from the mean of the Monte-Carlo simulations was used in this study. Because EwE uses primary producer functional groups and not individual species, the approach assumes that primary producer species that go locally extinct due to their specific environmental tolerances will be replaced by other species within each functional group.

We were unable to find a simple mechanistic model of mangrove primary production rate in the published literature. Mangroves will be affected by a range of processes under climate change and a review by Gilman et al. (2008) suggests that sea-level rise will cause large-scale loss of mangrove habitat. To simulate this in the Ecosim models, we assumed a 10% decline in mangrove primary production rate over 50 years, which was comparable to the magnitude of change for other primary producers, and investigated the influence of this assumption in the sensitivity analysis.

Applying changes in primary production to Ecosim

Ecosim uses a forcing function on the monthly rate of primary production to specify temporal changes in primary production that are driven by physical processes. For both climate-driven primary production change and sensitivity analyses, we used linear forcing functions over 50-year periods. For the climate-driven production change scenarios, mean production trends for each primary producer were calculated for each EwE model region using regression of time against monthly production predictions from the primary production models. The GCM and NPZD resolutions were not sufficiently fine to resolve the EwE models for Darwin Harbour and Port Phillip Bay, so we took the mean across model cells adjacent to these bays. Trends in primary production rate were calculated by taking the slope of primary production across all years from 2000 to 2050 in the primary production models and standardizing the trend to the mean for years 2000–2004. While seasonal and interannual variability in future primary production may also affect marine ecosystems, we used trends to simplify interpretation of results.

Sensitivity analysis of primary production

Prediction of changes in primary production is a major source of uncertainty in our results. To address this and to investigate the sensitivity of marine ecosystems to primary production trends, we considered alternative production change scenarios in each Ecosim model to investigate the sensitivity of marine ecosystems to primary production trends. For each Ecosim model, we simulated six primary production change scenarios where primary production rate by all autotroph groups in each model changed linearly by −40%, −20%, −10%, 10%, 20% or 40% over 50 years. To further explore differences in response to climate change by different types of producers, we considered two additional scenarios for models with benthic and pelagic producers: one with benthic primary producers alone declining linearly by 10% over 50 years, and the other with pelagic primary producers (phytoplankton) alone declining by 10% over 50 years.

Sensitivity analyses of vulnerability formulations

Each Ecosim model’s representation of an ecosystem is a function of the hypothesis it was developed to explore, the data available, and the developer’s expertise (Table 1), all of which contribute to uncertainty in our predictions. By comparing results among 12 different Ecosim models we could simultaneously consider effects of ecosystems properties and effects of model design.

We also considered the effect of different Ecosim vulnerability formulations on the robustness of predictions. The first vulnerability formulation had all vulnerability parameters in all models set to a moderate level, whereby consumption rate of a predator group could at most double (Mackinson et al., 2003). The second uses the fitted vulnerability estimates for each model where time-series data were available. In this formulation vulnerability parameters could vary substantially across functional groups and be of greater magnitude, with the high values reflecting potential for strong top-down control of prey biomasses by predators. The third formulation represented a top-down ecosystem, where higher trophic levels can exert stronger predation pressures on their prey. We achieved this by assuming that the vulnerability of prey was a positive linear relationship with each consumer’s trophic level (trophic level formulation). Values were scaled such that consumption rates of the lowest trophic level consumers were constant and consumption rates of the highest trophic level predators could increase four times. For details of sensitivity of results to nontrophic interactions see Appendix S3. For all models we excluded formulations that produced numerical instability, indicated by cyclic oscillations in biomass trends of unrealistic magnitude.

Ecological indicators of climate change effects on fisheries and biodiversity

To assess the impact of climate-driven changes in primary production on marine ecosystems, we analysed the difference in ecosystem state in the 50th year of
Ecosim simulations with and without primary production forcing. Note that fishing effort was held constant for all simulations. Thus, in simulations without primary production forcing, trends in the biomasses of groups did not differ from those in the initial conditions specified by the model’s author. Effects of climate change on marine ecosystem biodiversity, fisheries, and community composition were measured using six ecological indicators for each Ecosim model. The first was wet weight of fishery landings (except the Tasmanian Seamount model, because this region has been declared a protected area and has no current fishing). The second indicator was the value of fishery landings because the composition of fisheries catch might also change in the future. Prices per kilogram for each functional group in each model region during the 2005–2006 financial year were used to estimate value of catches (Australian Bureau of Agriculture and Resource Economics, 2008). This calculation assumes the relative value and costs of each fishery was constant through time and we did not consider changes in the costs of fishing. The third indicator was the change in biomass of functional groups with conservation interest, including sharks, turtles, seabirds and marine mammals.

The final three indices used reflect effects of climate change on community composition, that is, the relative abundance of different functional groups. The fourth indicator, mean biomass longevity, was used to measure changes in the prevalence of functional groups with slow biomass turnover. Biomass longevity of a functional group was calculated as the inverse of its Ecopath production per unit biomass rate and the mean for each model was calculated by weighting longevity values by the relative biomass of each group (Christensen & Walters, 2004b). The fifth indicator, mean trophic level, is a useful indicator of the effects of fishing on ecosystems (Fulton et al., 2005). Ecopath calculates trophic level on a continuous scale for each functional group, based on its dietary composition. Changes in mean biomass longevity and mean trophic level indicate that some groups of particular biomass longevity or trophic level benefit from trends in primary production more than others. The last indicator was community biomass evenness of all groups in an Ecosim model and was measured using the Kempton index, which is the slope of the cumulative biomass curve (Ainsworth & Pitcher, 2006). A decrease in the slope under production change would indicate that a small number of groups dominate under the new environmental conditions.

Results
The first section of the Results describes predicted climate-driven primary production change under the A2 emission scenario, the second section details the impact of these changes on the ecosystems using the Ecosim models, and the third section is a sensitivity analysis that considers the effect of uncertainty in primary production trends and Ecosim model formulation.

Predicted primary production change
Under the IPCC A2 emission scenario, the NPZD model predicted a small increase of nutrients (generally <10%) in most of the Australian Ecosim model regions. This increase in nutrients caused increases in phytoplankton production rate in most areas (Fig. 2). In coastal models, increased nutrient availability and temperatures also increased the primary production rate of macroalgae and benthic microalgae, but decreased primary production of seagrasses (see Table 1 for magnitudes), due to enhanced epiphyte growth on photosynthetic seagrass blades. There was considerable spatial variation in primary production rate change around Australia. Increases were largest on the east coast of Australia, where the NPZD model predicted phytoplankton production rate to increase by >60% for some grid cells. This means high primary production rate increases for east coast Ecosim models, up to 33% over 50 years in the Eastern Tuna and Billfish fishery model. Changes in the far south-east (Tasmania, Port Phillip Bay and Seamounts models) and west coast (Jurien Bay and North-West Shelf models) were much smaller and negative in some cases. In the North, within the Gulf of Carpentaria Ecosim region there were areas of large increases and decreases. However, the mean production trend was for increases in phytoplankton, benthic microalgae and macroalgae and decreases in seagrass. The Darwin Harbour Ecosim model region also showed increases in phytoplankton and benthic microalgae production.

Effects of projected production change on fisheries and marine ecosystems
Over 50 years, total fishery landings and the value of landings increased due to increasing primary productivity (Fig. 3a and b). Landings and biomass increases were small in regions with small increases in primary productivity (Port Phillip Bay and Tasmania) and larger in regions with large productivity increases (Gulf of Carpentaria and the Eastern Tuna and Billfish Fishery, Fig. 3a and b). Fishery value increased at a slower rate than fishery landings in the Gulf of Carpentaria, Burdekin coast, Eastern Tuna and Billfish Fishery and New South Wales shelf models, because lower value species replaced higher value species in catches. Vulnerability fitting in these three models contributed to
non-linear changes in fishery value by allowing for higher predation rates and strong competition interactions. For example in the Eastern Tuna and Billfish Fishery, the climate-driven increase in shark predation on juvenile tuna reduced catches of high value adult tuna (~9% compared with increases in catches for other groups of over 40%) and catches of the small predators functional group declined in the South-East Shelf model due to increasing predation by rays (~6% compared with increases in catches for other groups of over 30%).

Biomass of functional groups of conservation interest also generally increased (Fig. 4), although turtles declined in the Jurien Bay model and marine mammals (dugongs) declined in the Burdekin coast model, due to seagrass declines. Strong competition between marine mammals and fast growing fish species contributed to the decline in the Burdekin coast model (Fig. 4b and d). Increases in the biomass of marine mammals in the other models were generally smaller than those of other groups (Fig. 4d). Turtles showed large increase in the Eastern Tuna and Billfish Fishery and Gulf of Carpentaria models, despite concurrent increases in biomass of sharks which are a major predator of turtles (Fig. 4b).

Changes in community composition (captured by community biomass evenness, mean biomass longevity of each system, and mean trophic level) were small for most regions (Fig. 5). The Burdekin coast model showed the greatest change for all indices of compositional change. Vulnerability fitting of this model allowed for strong top-down control and nonlinear changes in

Fig. 2 Predicted relative percent change in phytoplankton production rate from the 2000–2004 mean to 2050 for the Australasian region. The CSIRO Mk 3.5 global climate model (GCM) was used to force a nutrient-phytoplankton-zooplankton submodel under the A2 emission scenario. Phytoplankton production rate is predicted to generally increase around Australia. The pixel size indicates the resolution of the NPZD and land (white spaces) has been overlaid with a high-resolution map.

Fig. 3 Change in fisheries landings (a, %) and value of landings (b, %) over 50 years for the Australian Ecosim model regions under the A2 greenhouse gas emission scenario. Regions shown on the maps are representative of the model regions only. Results are relative to simulations with no climate change.
community composition. The small number of functional groups in this model (due to a high degree of aggregation of species) also contributed to the nonlinear changes in community composition. Interestingly, even though total primary productivity increased, evenness declined for this model and the Darwin Harbour and Gulf of Carpentaria models, indicating that interactions between declines in seagrass or mangroves and
increases in phytoplankton can have large effects on community composition in these ecosystems.

Sensitivity of Ecosim models to different primary production trends

We conducted model experiments where production rate of all primary producers was changed linearly at the same rate over 50 years for each model and for different vulnerability formulations. The general trend of all functional groups was for primary productivity increases (decreases) to cause the biomass of higher trophic levels to increase (decrease, Fig. 6). These groups included most of those caught by fisheries and groups with conservation interest, including sharks, turtles, seabirds, and marine mammals.

While this mean response of functional group biomasses to primary production change was similar for fitted and moderate vulnerability formulations, there was considerable variability among the magnitude of group responses to productivity change. Fitted vulnerability formulations always had greater variance in the response of groups to primary production change than moderate vulnerability formulations (Fig. 6). This can be attributed to greater variability and magnitude of vulnerability parameters, which allows for stronger top-down control of functional group biomasses in fitted formulations when compared with moderate formulations.

Models that had vulnerability parameters fitted to more time-series data (Gulf of Carpentaria, Jurien Bay, South East Shelf and New South Wales Shelf, Table 1) tended to show greater variability. For some functional groups this variability was manifest as a reversal of the expected response, due to high predation rates or strong competition with other functional groups, with increases in primary productivity causing biomass declines. Groups showing such reversals include tiger prawns in the Gulf of Carpentaria model and yellowfin tuna in the Eastern Tuna and Billfish Fishery model. These groups have sufficient time-series data available to estimate the Ecosim vulnerability parameters using

Fig. 6 Change in the biomass of all consumer groups (%) for change in primary production rates of all primary producers over 50 years for each Ecosim model. Shown are results for intermediate (black points, solid regression line) and fitted (grey points, dashed regression line) vulnerability scenarios. Values are offset on the horizontal axis for visualization. R^2 values indicate the proportion of variance in groups responses explained by primary production change for intermediate and fitted scenarios. See Fig. 1 for model acronyms. All vertical axes are scaled between -200 and $+200$, two outlying groups in the Great Barrier Reef coast and New South Wales models are not shown. One outlier (herbivorous fish) was removed from the analysis for the Burdekin coast model because it biased variance estimates to values unrepresentative of the general trend.
real biomass trends, which provides some confidence in the simulated response.

Increases in biomass of most functional groups caused fishery landings to increase (Fig. 7). The response was generally linear, although larger and more variable vulnerability parameters in vulnerability fitted models could cause nonlinear responses. For instance, in the fitted vulnerability formulation of the Eastern Tuna and Billfish fishery model, increases in primary production led to increases in predation on juvenile yellowfin tuna by sharks, which led to declines in the yellowfin biomass. Yellowfin tuna makes up a relatively large proportion of the catch, so declines in this species led to smaller catch gains overall than in the moderate vulnerability formulation. In the South-East Shelf model, gemfish biomass and thus gemfish catch, increased more slowly in fitted vulnerability formulations, due to competition for prey with other species. However, changes in total catch for the South-East Shelf model were linearly related to production change, because fisheries in this model catch a large number of other functional groups. Nonlinear trends in catch were more pronounced in the Eastern Tuna and Billfish fishery and Burdekin coast models than other models, where fisheries caught fewer functional groups.

Changes in indices of community composition were nonlinear and tended to show greater changes when primary production declined, compared with when production increased. Production declines caused greater changes because as a group approaches extinction, dependent predator species must feed more heavily on other prey species or go extinct. Evenness tended to decrease for reductions in primary production but remain relatively constant for production increases. This indicates that fewer functional groups dominate under lower productivity environments and that the relative biomasses of all functional groups remain constant under higher productivity environments (Fig. 8).

Generally, mean biomass longevity increased for reductions in primary production, indicating that functional groups with lower biomass turnover out-compete those with higher turnover in low productivity environments (Fig. 9), although this trend was reversed in the Darwin Harbour, Port Phillip Bay, and vulnerability fitted Burdekin coast models. We could not relate the different response of these models to a particular feature of the ecosystems or to model design because these models cover a range of different ecosystem types and other models with similar levels of complexity did not show the same trend (e.g. Eastern Tasmania and Great
Barrier Reef models). Mean biomass longevity in the southern Tasmanian Seamounts model was insensitive to production change, due to the high proportion of species with low biomass turnover rates in this ecosystem, which also accounts for the slow response of its groups to changes in primary production (Fig. 6). Mean trophic level was insensitive to primary production change in most models (Fig. 10). Qualitative trends depended upon both the model and the vulnerability formulation, suggesting that trophic level was not a strong determinant of the response of a functional group to changes in primary production. Comparisons of model structure did not shed any light on the reasons for the different responses to production change between models.

Sensitivity analysis of declines in benthic primary producers (macroalgae, seagrass, benthic micro-algae and mangroves) or pelagic production (phytoplankton) indicated the relative importance of autotrophic groups in each model (Fig. 11). Despite the relatively low contribution to total primary production (Table 1), benthic production was more important to fisheries in the Jurien Bay, Gulf of Carpentaria, Great Barrier Reef, Burdekin coast and Eastern Tasmania models, indicated by substantial decreases in fishery landings when benthic primary producers were decreased (Fig. 11a). This is due to the importance of benthic feeding invertebrates (prawns, rock lobster and shellfish) for fisheries in these systems. Fishery landings in other models were more dependent on pelagic phytoplankton production. Landings always decreased when one or both benthic and pelagic primary producers were specified to decrease, indicating that generally fisheries are dependent on primary production from both sources.

Changes in either benthic or pelagic production had a greater effect on community composition than when benthic and pelagic production changed simultaneously for some indices and Ecosim models (Fig. 11b–d). For instance, increases in mean biomass longevity were greatest for benthic production decreases in the Gulf of Carpentaria model (Fig. 11c) and changes in benthic and pelagic production had antagonistic effects on mean trophic level in the Darwin Harbour, Great Barrier Reef, North-West Shelf, Jurien Bay and Tasmanian Coast models (Fig. 11d). These antagonistic responses of indices are caused by pelagic and benthic primary production providing for different subsets of functional groups within the models.

© 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1194–1212
Discussion

Effects of primary production change

Increases in primary productivity of the magnitude predicted by the primary production models can have large effects on the biomass of marine organisms and fishery catches. For most of the 12 ecosystems examined, predicted increases in primary production in Australia’s seas led to greater fisheries catch and supported higher biomasses of animals such as sharks, turtles and seabirds, which are currently threatened by human activities. This prediction is supported by empirical evidence that fishery catch is strongly controlled by primary production (Ware & Thomson, 2005). In sensitivity analyses that considered alternative rates of primary production change, the biomasses of functional groups and fishery catch showed linear responses to linear primary production rate forcing across the 12 different models used here. Designing food web models with appropriate levels of complexity that balance model tractability and generality with model realism has been the focus of much research attention, because it can have large effects on model results (Fulton et al., 2003). The 12 models used here cover a range of different complexities and ecosystem types. However, the responses of these models to different rates of primary production change were broadly similar. Therefore, responses of fisheries catch and biomass of marine organisms to climate-driven primary production change may be predictable at a broad scale given reliable primary production predictions.

Response depends upon vulnerability formulation and data available

Predicting species’ responses to primary production change will be more challenging when predation and competition with other species strongly influences those species’ biomass. Where time-series data were available for estimating vulnerability parameters, the trends in biomass of fitted groups sometimes showed the reverse response to those in moderate vulnerability formulations, due to stronger top-down control on those groups and competition with other groups. Likewise, the role of predation and competition interactions may be underestimated when data are unavailable for time-series fitting. For instance, turtle biomass increased
concurrent with increases in sharks, but in reality large shark populations may exert strong control on turtle biomass (Heithaus et al., 2008). Thus, changes in primary productivity (bottom-up effects) will cause predictable changes in the biomass of most marine organisms, but predation and competition can control the magnitude and direction of the response. Acquiring adequate time-series data to parameterize predation and competition interactions can significantly improve predictive ability of food web models under primary production change (Gue\'nette et al., 2006; Mackinson et al., 2008). Unfortunately, long-term data sets are in short supply; gathering more long-term data is an important research aim, especially given rapid anthropogenic climate change (Richardson & Poloczanska, 2008). Alternatively, other methods to estimate the interaction strength between top-down effects and environmental change need to be sought, such as meta-analysis (Gruner et al., 2008) or analysis of environmental effects on diet composition (Kirkwood et al., 2008).

Effects of model complexity

In order to resolve predation and competition interactions, food web models need to be designed with appropriate levels of complexity (Metcalf et al., 2008). For instance in sensitivity analysis, fishery catch showed nonlinear responses to primary production change in the vulnerability fitted Burdekin coast model. Strong top-down effects in the Burdekin coast model were further amplified by a high degree of aggregation of species into functional groups. Aggregation reduces the total number of groups in the model but increases their connectivity (Pinnegar et al., 2005), thereby increasing the relative importance of each functional group for determining the model’s behaviour. Thus, predation and competition interactions which strongly influence a single functional group’s biomass will have large effects on other functional groups in aggregated models. By contrast, the vulnerability fitted New South Wales shelf and South-East Shelf models which are disaggregated into a larger number of species are less impacted, because biomass changes in a single group did not have as large an effect on other groups. Appropriately designed Ecosim models may be even more robust to uncertainty in the magnitude of the vulnerability parameters, for instance, model design choices can result in numerical instability under some vulnerability parameter formulations and produce unrealistic cyclic patterns in functional group biomasses.
Indices of community composition

Indices of community composition may help to identify functional groups that will be most affected by climate change. Using an Ecosim model, Watters et al. (2003) found lower trophic level consumers responded more to changes in primary production than higher trophic levels. We did not find the same pattern in trophic levels across the 12 models used here. This may be due to either the longer time-scale of our analysis than that of Watters et al. (2003), who looked at 1 year pulses in primary production, or it may be that this trend does not generally occur across a broad range of models or ecosystems, particularly those with the lower productivity levels typical of the Australian region. In our analyses and those of Pinnegar et al. (2005), functional groups with lower biomass turn-over tended to show smaller changes in biomass than groups with higher biomass turnover, due to their slower responses to change. This trend was manifest as increases in mean biomass longevity for decreases in primary production and was also apparent in the generally smaller changes in marine mammal biomass when compared with other groups of conservation importance. However, due to the weak strength of these effects and inconsistency of responses across different models, we found it difficult to interpret changes in the community indices and consistently relate them to model design or real ecosystem effects. In another comparison of multiple fitted EwE models, Mackinson et al. (2008) also found that system level indices were inadequate for predicting effects on species. The lack of generality in these studies suggests that a species’ interactions with other species are more important determinants of its response to primary production change than that species’ traits, such as trophic level (Mackinson et al., 2008). Quantifying the strength of predation and competition interactions should be a major focus for improving predictions of the effects of primary production change on fisheries and biodiversity.

Caveats to predicting coastal primary production

Reliable predictions of coastal primary productivity are important for predicting the effects of climate change on coastal species and fisheries. Changes in production by the coastal primary producers, seagrass, mangroves, benthic microalgae, and macroalgae, did have large

![Fig. 11](image-url)
effects on population biomasses. Furthermore, sensitivity analyses showed that community composition was more dependent on benthic than pelagic primary production in some models, because different parts of the community were dependent on different sources of primary production. However, patterns of productivity may be more complex and consequently, more difficult to predict in coastal regions than open ocean regions (Cloern & Jassby, 2008), due to land–sea interactions and dynamic feedbacks between primary producers, consumer food webs and available habitat (Murray & Parslow, 1999; Fulton et al., 2004; Cloern & Jassby, 2008). A goal for the future is to integrate primary production models with food web models that fully account for feedbacks between primary producers and consumer nutrient recycling (Travers et al., 2007). Further work should also consider the effects of climate change on land-based nutrient inputs to coastal regions and the potential loss of shallow water habitats under sea level rise. Currently, predicting changes in the physical environment in coastal regions is challenging because general circulation models do not resolve fine-scale oceanographic processes which can be important for coastal productivity. Developing more reliable primary production models is important because our sensitivity analyses show decreases in primary production will cause decreases in fishery catches and biomass of species which will prove challenging for management.

Caveats relating to global warming

Predictions from food web models under climate change could also be improved by incorporating the effects of global warming on consumer species. Warming temperatures that cause individual species life histories and distributions to change can have implications for community composition and ecosystem function (Hiddink & ter Hofstede 2008; Ling et al., 2008). Current models of the ecological effects of global warming effects have made useful progress by studying the responses of individual species to warming (e.g. Clark et al., 2003; Cheung et al., 2009; Hobday 2009). Warming will also affect ecological interactions (Poloczanska et al., 2008; Preston et al., 2008) and we have shown that ecological interactions have an important bearing on predictions of biomass change for species. Food web models provide a useful platform for investigating the combined the effects of warming, primary production change and inter-specific interactions (Watters et al., 2003). For instance, spatially explicit Ecosim models (Christensen & Walters, 2004a) that include climate change effects, could capture temperature-driven shifts in species ranges and the resulting altered ecological interactions.

Conclusions and recommendations

In summary, reliable primary productivity predictions will be a necessary part of predicting ecosystem and fishery responses to climate change. However, knowledge of ecological interactions is required to predict outcomes for particular species because interactions affect the magnitude and direction of biomass changes. Analyses of food webs under climate change should take care to parameterize ecological interactions. Biomass time-series are used to parameterize interactions in Ecosim, however, alternative methods that make the most of available data should also be sought. Primary production declines may challenge management by necessitating reductions in other anthropogenic impacts on marine ecosystems to maintain sustainable fisheries and conserve biodiversity. On the other hand, primary production increases will provide opportunities to recover overfished fisheries, increase profitability of fisheries and conserve threatened biodiversity.

Acknowledgements

We thank Rodrigo Bustamante, Jock Young, Russ Babcock, Neil Loneragan and many others for allowing us to use Ecosim models that they were instrumental in developing and the developers of the GCM and NPZD. We are extremely grateful to two anonymous reviewers and Lucy Robinson for their helpful comments provided on earlier drafts. This project was supported by an Australian Research Council grant DP0879365. CJB’s research was supported by a University of Queensland Graduate Research Scholarship and CSIRO Climate Adaptation Flagship scholarship. TAO’s contribution was supported by the Pew Fellows Program in Marine Conservation. The ETBF Ecosim model was developed under the Fisheries Research and Development Corporation project 2004/063.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Caveats, impacts on results and how each was addressed.

Appendix S2. Predicting benthic primary production rate.

Appendix S3. Habitat mediation.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.